Abstract

Polymers with functionalized surfaces have attracted a lot of attention in the last few years. Due to the progress in the techniques of polymer micro-patterning, miniaturized bioanalytical assays and biocompatible devices can be developed. In the presented work, we performed surface modification of polyethylene naphthalate (PEN) foil by an excimer laser beam through a photolithographic contact mask. The aim was to fabricate micro-patterned areas with surface functional groups available for localized covalent immobilization of biotin. It was found out that depending on the properties of the laser scans, a polymer surface exhibits different degrees of modification and as a consequence, different degrees of surface biotinylation can be achieved. Several affinity tests with optical detection of fluorescently labeled streptavidin were successfully performed on biotinylated micro-patterns of a PEN foil. The polymer surface properties were also evaluated by electrokinetic analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results have shown that PEN foils can be considered suitable substrates for construction of micro-patterned bioanalytical affinity assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.