Abstract

Spinel-type ternary LiMn(2)O(4) oxide precursor was synthesized by direct hydrothermal synthesis of Mn(NO(3))(2), LiOH, and H(2)O(2) at 383 K for 8 h, a better technique for controlling the nanocrystalline structure with well-defined pore size distribution and high surface area than the traditional solid state reaction method. The final low-dimensional MnO(2) nanorod ion-sieve with a lithium ion selective adsorption property was further prepared by an acid treatment process to completely extract lithium ions from the Li-Mn-O lattice. The effects of hydrothermal reaction conditions on the nanostructure, chemical stability, and ion-exchange property of the LiMn(2)O(4) precursor and MnO(2) ion-sieve were systematically examined via powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and lithium ion selective adsorption measurements. The results show that this new kind of low-dimensional MnO(2) nanorod can be used for lithium extraction from aqueous environments, including brine, seawater, and waste water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.