Abstract
AbstractPlasmonic structural colors, arising from resonance interactions between photons and metallic nanostructures, have been developed rapidly for high‐end applications. However, common structural color materials and fabrication methods usually have open plasmonic nanostructures and limited scalability, respectively. Here, a new scheme based on Ag nanowire arrays/SiO2 composite metamaterial films with subwavelength enclosed nanostructures involved that combine a dielectric gap layer and a metal mirror is presented. The whole stacked structure can be simply prepared only via magnetron sputtering without any other procedures. Specifically, by changing deposition parameters, the geometry size and sub‐10 nm periodic parameters of the structure unit cell array can be finely tuned in a controllable and reproducible way. By experiments and simulations, it is demonstrated how interwire coupled plasmonic transverse modes in vertically orientated nanocavity arrays control multiple nanocavity standing‐wave resonances at visible wavelengths, generating three primary colors‐included bright and saturated colors across a wide gamut. Large‐area and uniform structural colors, whether on rigid or flexible substrates, show angle‐insensitive and air‐stable features. In a wider perspective, this work suggests that the material scheme and fabrication advances represent a robust platform for plasmonic color designing, theory exploring, and large‐scale manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.