Abstract

A general method for the direct synthesis of highly homogeneous and dense polymerized carbon nitride (PCN) nanosheet films on F: SnO2 (FTO) is developed. Detailed photoelectrochemical (PEC) water-splitting studies reveal that the as-synthesized PCN films exhibit outstanding performance as photoanode for PEC water-splitting. The optimal PCN photoanode exhibits excellent photocurrent density of 650µA cm-2 , and monochromatic incident photon-to-electron conversion efficiency (IPCE) value up to 30.55% (λ= 400nm) and 25.97% (λ= 420nm) at 1.23 VRHE in 0.1m KOH electrolyte. More importantly, the PCN photoanode has an excellent hole extraction efficiency of up to 70 ± 3% due to the abundance of active sites provided by the PCN photoanode nanosheet, which promotes the transport rates of OER-relevant species. These PCN films provide a new benchmark for PCN photoanode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.