Abstract
Direct ethanol fermentation from amorphous cellulose was achieved using an engineered industrial Saccharomyces cerevisiae strain. Two cellulase genes endoglucanase (eg3) and β-glucosidase (bgl1) were obtained from Trichoderma viride and integrated into the genome of S. cerevisiae. These two cellulases could be constitutively coexpressed and secreted by the recombinant strain S. cerevisiae-eb. The enzyme activities were analyzed in the culture supernatants, with the highest endoglucanase activity of 2.34 units/ml and β-glucosidase activity of 0.95 units/ml. The effects of pH, temperature and metal ions on enzyme activities were analyzed. The coexpression strain S. cerevisiae-eb could grow in carboxymethyl cellulose (CMC) and utilize it as the single carbon source. The 20 g/L CMC as a model substrate of amorphous cellulose was used in fermentation. The ethanol production reached 4.63 g/L in 24 h, with the conversion ratio of 64.2% compared with the theoretical concentration. This study demonstrated that the engineered industrial strain S. cerevisiae-eb could convert amorphous cellulose to ethanol simultaneously and achieve consolidated bioprocessing (CBP) directly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.