Abstract
We consider reconstruction of signals by a direct method for the solution of the discrete Fourier system. We note that the reconstruction of a time-limited signal can be simply realized by using only either the real part or the imaginary part of the discrete Fourier transform (DFT) matrix. Therefore, based on the study of the special structure of the real and imaginary parts of the discrete Fourier matrix, we propose a fast direct method for the signal reconstruction problem, which utilizes the numerically truncated singular value decomposition. The method enables us to recover the original signal in a stable way from the frequency information, which may be corrupted by noise and/or some missing data. The classical inverse Fourier transform cannot be applied directly in the latter situation. The pivotal point of the reconstruction is the explicit computation of the singular value decomposition of the real part of the DFT for any order. Numerical experiments for 1D and 2D signal reconstruction and image restoration are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.