Abstract

The dietary flavanol (-)-epicatechin has been suggested to mediate its vasodilatory effect by increasing nitric oxide levels in endothelial cells. To directly prove the formation of nitric oxide (NO) in human endothelial cells (HUVEC) in vitro by trapping NO to yield a fluorescent nitrosamine. HUVEC were treated with (-)-epicatechin; nitrite and NO formation were determined by reductive chemiluminescence detection and the NO-sensitive fluorophore 5-methoxy-2-(1H-naphthol[2,3-d]imidazol-2-yl)-phenol copper complex (MNIP-Cu), respectively. MNIP was synthesized in a rapid and convenient one-step microwave reaction. Endothelial nitric oxide synthase (eNOS) mRNA levels and mRNA stability were measured. Incubation with (-)-epicatechin (0.3-10 μM) led to elevated NO levels in HUVEC measured via reductive chemiluminescence detection and visualized as the fluorescent NO derivative of MNIP. Expression of eNOS mRNA and mRNA stability were not affected by (-)-epicatechin treatment within the time frame studied. (-)-Epicatechin augments the level of NO in endothelial cells, a process suggested to be responsible for the vasodilatory properties of the compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.