Abstract

AbstractIn this study, we analyze an electromagnetic ion cyclotron (EMIC) wave event of rising tone elements recorded by the Van Allen Probes. The pitch angle distributions of relativistic electrons exhibit a direct response to the two elements of EMIC waves: at the intermediate pitch angle, the fluxes are lower; and at the low pitch angle, the fluxes are higher than those when no EMIC was observed. In particular, the observed changes in the pitch angle distributions are most likely to be caused by nonlinear wave‐particle interaction. The calculation of the minimum resonant energy and a test‐particle simulation based on the observed EMIC waves support the role of the nonlinear wave‐particle interaction in the pitch angle scattering. This study provides direct evidence for the nonlinear pitch angle scattering of electrons by EMIC waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.