Abstract

Direct evidence of plasmon-enhanced 4-nitrophenol (4-NP) reduction is observed in a photo-assisted catalytic process with the NaBH4 as the electron donator by using the Ag nanoparticles (AgNPs) supported onto a flexible and processable polyacrylonitrile (PAN) microfibrous network. The Ag/PAN composite fibrous networks exhibit certain activity for 4-NP reduction in general condition. Significantly, when the beam irradiation is introduced to excite the surface plasmon resonance (SPR) of AgNPs, we observed an enhanced catalytic activity for 4-NP reduction (1∼3 times). Meanwhile, the enhancement factors for the catalytic kinetic constants are directly correlated with the SPR absorption spectra of AgNPs. Further in-depth studies by adjusting the experiment conditions reveal that the SPR-induced ultrafast thermal effect of AgNPs is responsible for the enhanced catalytic activity that can not be nevertheless initiated or magnified by the hot plasmonic electrons from Ag. By combining with the theoretical analyses, we propose that this plasmon enhancement is ascribed to the promoted diffusion rate of reactants in the solution driven by increasing the local temperature around the AgNPs on the basis of SPR-enhanced electric field. Our present work provides a new sight to understand the plasmonic enhancement of metal-related catalytic reactions, and would also create more opportunities to guide the design and fabrication of high-performance plasmonic catalysts with excellent recycling property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.