Abstract

Surface plasmon resonance was used to investigate two previously described interactions analyzed by reverse genetics and complementation mutation experiments, involving 5BSL3.2, a stem-loop located in the NS5B coding region of HCV. 5BSL3.2 was immobilized on a sensor chip by streptavidin-biotin coupling, and its interaction either with the SL2 stem-loop of the 3' end or with an upstream sequence centered on nucleotide 9110 (referred to as Seq9110) was monitored in real-time. In contrast with previous results obtained by NMR assays with the same short RNA sequences that we used or SHAPE analysis with longer RNAs, we demonstrate that recognition between 5BSL3.2 and SL2 can occur in solution through a kissing-loop interaction. We show that recognition between Seq9110 and the internal loop of 5BSL3.2 does not prevent binding of SL2 on the apical loop of 5BSL3.2 and does not influence the rate constants of the SL2-5BSL3.2 complex. Therefore, the two binding sites of 5BSL3.2, the apical and internal loops, are structurally independent and both interactions can coexist. We finally show that the stem-loop SL2 is a highly dynamic RNA motif that fluctuates between at least two conformations: One is able to hybridize with 5BSL3.2 through loop-loop interaction, and the other one is capable of self-associating in the absence of protein, reinforcing the hypothesis of SL2 being a dimerization sequence. This result suggests also that the conformational dynamics of SL2 could play a crucial role for controlling the destiny of the genomic RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.