Abstract
The anatomical relationship between vagal afferents and brain nitric oxide synthase containing terminals in the nucleus tractus solitarii was studied by means of anterograde tracing combined with immunocytochemistry and immuno-electron microscopy. Biotinylated dextran amine was injected into the nodose ganglion with a glass micropipette. Four to eight days following the injection, regions of the nucleus tractus solitarii containing biotinylated dextran amine-labeled vagal afferents and those containing nitric oxide synthase-immunopositive terminals were congruent. Many neurons exhibiting nitric oxide synthase immunoreactivity were found within the biotinylated dextran amine-containing terminal field. However dense labeling of terminals with biotinylated dextran amine precluded determination if the terminals were nitric oxide synthase-immunoreactive. Therefore, we combined degeneration of vagal afferents after removal of one nodose ganglion with nitric oxide synthase immuno-electron microscopy. Axon terminals that possessed characteristic vesicle clusters and were partially or completely engulfed by glial processes were identified as degenerating vagal afferents. Degenerating axon terminals comprised 38% of the total axon terminals in the nucleus tractus solitarii in a sample of sections; and of the degenerating axon terminals, 67% were nitric oxide synthase-immunoreactive. Nitric oxide synthase immunoreactivity was present in 41% of the non-degenerating axon terminals. Prominent staining of dendrites for nitric oxide synthase immunoreactivity indicated that much of the nitric oxide synthase in the nucleus tractus solitarii is not derived from peripheral afferents. Of the total number of dendritic profiles sampled, half were nitric oxide synthase-immunoreactive. Our data support the hypothesis that nitric oxide or nitric oxide donors may be present in primary vagal afferents that terminate in the nucleus tractus solitarii. While this study confirms that vagal afferents contain brain nitric oxide synthase, it demonstrates for the first time that the majority of nitric oxide synthase immunoreactivity in the nucleus tractus solitarii is found in intrinsic structures in the nucleus. In addition, our data show that second or higher order neurons in the nucleus tractus solitarii may be nitroxidergic and receive both nitroxidergic and non-nitroxidergic vagal input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.