Abstract

The ability of tirapazamine (1, 3-amino-1,2,4-benzotriazine 1, 4-dioxide, SR4233) to fix DNA radical lesions is demonstrated by studying the reaction between the antitumor drug and an oligonucleotide radical that is independently produced at a defined site within a biopolymer. Using beta-mercaptoethanol as a competitor, it was determined that tirapazamine traps a C1'-nucleotide radical with a rate constant of approximately 2 x 10(8) M-1 s-1. Product and isotopic labeling studies suggest that tirapazamine reacts with the radical via covalent adduct formation, resulting primarily from reaction at the N-oxide oxygen. Intermediate covalent adducts could not be observed, but are postulated to decompose to the alkaline labile 2'-deoxyribonolactone lesion. These experiments affirm recent proposals suggesting that tirapazamine can serve as a surrogate for O2 in converting DNA radicals into toxic strand damage events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.