Abstract

Hydrogen peroxide (H2O2) synthesis generally requires substantial postreaction purification. Here, we report a direct electrosynthesis strategy that delivers separate hydrogen (H2) and oxygen (O2) streams to an anode and cathode separated by a porous solid electrolyte, wherein the electrochemically generated H+ and HO2 - recombine to form pure aqueous H2O2 solutions. By optimizing a functionalized carbon black catalyst for two-electron oxygen reduction, we achieved >90% selectivity for pure H2O2 at current densities up to 200 milliamperes per square centimeter, which represents an H2O2 productivity of 3.4 millimoles per square centimeter per hour (3660 moles per kilogram of catalyst per hour). A wide range of concentrations of pure H2O2 solutions up to 20 weight % could be obtained by tuning the water flow rate through the solid electrolyte, and the catalyst retained activity and selectivity for 100 hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.