Abstract

AbstractA novel nanocomposite of colloidal gold (GNPs) and hydroxyapatite nanotubes (Hap) was prepared for immobilization of a redox protein, hemoglobin (Hb), on glassy carbon electrode. The immobilized Hb showed fast direct electron transfer and excellent electrocatalytic behavior toward reduction of hydrogen peroxide. A synergic effect between GNPs and Hap for accelerating the surface electron transfer of Hb was observed, which led to a pair of redox peaks with a formal potential of (−340±2) mV at pH 7.0, and a new biosensor for hydrogen peroxide with a linear range from 0.5 to 25 μM and a limit of detection of 0.2 μM at 3σ. Owing to the good biocompatibility of the nanocomposite, the biosensor exhibited good stability and acceptable reproducibility. The as‐prepared nanocomposite film provided a good matrix for protein immobilization and biosensor preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.