Abstract

AbstractA novel nanocomposite integrating the good biocompatibility of polyacrylic resin nanoparticles (PAR) and the good conductivity of colloidal gold nanoparticles was proposed to construct the matrix for the immobilization of hemoglobin (Hb) on the surface of a glassy carbon electrode (GCE). UV‐vis spectra demonstrated that Hb preserved its native structure after being entrapped into the composite film. The direct electrochemistry of hemoglobin (Hb) in this nanocomposite films showed a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks with a formal potential of −0.307 mV and a constant electron transfer rate of 2.51±0.2 s−1. The resultant amperometric biosensor showed fast responses to the analytes with excellent detection limits of 0.2 µM for H2O2 and 0.89 µM for TCA (S/N=3), and high sensitivity of 1108.6 for H2O2 and 77.14 mA cm−2 M−1 for TCA, respectively. The linear current response was found in the range from 0.59 to 7.3 µM (R2=0.9996) for H2O2 and from 5 to 85 µM (R2=0.9996) for TCA, while the superior apparent Michaelis–Menten constant was 0.012 mM for H2O2 and 0.536 mM for TCA, respectively. Therefore, the PAR‐Au‐Hb nanocomposite as a novel matrix opens up a possibility for further study on the direct electrochemistry of other proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.