Abstract

We evaluate the effect of electronic decoherence on intersystem crossing in the photodynamics of thioformaldehyde. First, we show that the state-averaged complete-active-space self-consistent field electronic structure calculations with a properly chosen active space of 12 active electrons in 10 active orbitals can predict the potential energy surfaces and the singlet-triplet spin-orbit couplings quite well for CH2S, and we use this method for direct dynamics by coherent switching with decay of mixing (CSDM). We obtain similar dynamical results with CSDM or by adding energy-based decoherence to trajectory surface hopping, with the population of triplet states tending to a small steady-state value over 500 fs. Without decoherence, the state populations calculated by the conventional trajectory surface hopping method or the semiclassical Ehrenfest method gradually increase. This difference shows that decoherence changes the nature of the results not just quantitatively but qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.