Abstract

Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is −0.45 W m−2 in the solar spectrum and +0.09 W m−2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of −1.76 W m−2 and longwave forcing of +0.31 W m−2. As a result, dust aerosol causes the absorption of 1.1 W m−2 in the atmosphere. The RF of dust aerosol is predicted to lead to a surface cooling of 0.5 K over the Sahara Desert and Arabian Peninsula. In the meantime, the upper troposphere is predicted to become warmer because of the absorption by dust. These changes in temperature lead to a more stable atmosphere, which results in increases in surface humidity. The upward sensible and latent heat fluxes at the surface are reduced, largely balancing the surface energy loss caused by the backscattering and absorption of dust aerosol. Precipitation is predicted to decrease moderately on a global scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.