Abstract
Simultaneous measurements of remote electron beam induced current (REBIC) and orientation imaging microscopy (OIM) in a scanning electron microscope (SEM) have been applied to a polycrystalline (Ba0.6Sr0.4)TiO3 with a positive temperature coefficient of resistivity (PTCR) to elucidate a grain-boundary character dependence of the potential barrier formation. The absence of electrical activity in a coherent Σ3 twin boundary is clearly imaged. The resistivity of individual grain boundaries estimated from a resistive contrast image is interpreted in terms of geometrical coherency, which is defined by the degree of coincidence in the reciprocal lattice points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.