Abstract
As a promising material for fabricating on-chip optoelectronic devices, germanium (Ge) has a direct band gap of 0.8 eV, which matches with the wavelength for optical communication. The energy difference is only 134 meV between direct and indirect band gaps, implying the possibility of a direct band gap light emission. In general, a p-i-n diode structure is used for a Ge photo emitter, of which fabrication process is relatively complicated and high-quality n-type doping is still an issue. Recently we achieved high Schottky barrier heights for electrons Φ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BN</inf> = 0.60 eV (HfGe/n-Ge) and holes Φ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BP</inf> = 0.57 eV (TiN/p-Ge) [1,2]. Based on this technology, we demonstrate direct band gap room temperature electroluminescence (EL) from bulk Ge using a fin-type asymmetric metel/Ge/metal (HfGe/Ge/TiN) structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.