Abstract

In order to assess the overall risk posed by engineered nanoparticles (ENPs), the biological effects of this emergent pollutant to aquatic ecosystems must be evaluated. We present findings from studies conducted with a diversity of ENPs (metallic, quantum dots) on a variety of freshwater and marine algae (phytoplankton) illustrating both their direct and indirect effects. We show that in general, while the surface properties of ENPs govern their aggregation behavior and ionic strength controls their dissolution, exopolymeric substances (EPS) produced by algae determine their potential to be toxic and thereby movement through the water column and food web. The production of EPS reduces the impact of ENPs (bioavailability and toxicity) and/or their ions on cellular activities of algae. It does not however directly reduce the aggregation and/or solubility of ENPs but rather affects their stability. Complicating understanding of these interactions is the great assortment of surface coatings for ENPs. This per...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.