Abstract

The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.