Abstract
Photoelectron imaging probes both molecular electronic structure and electron molecule interactions. In the current work images were recorded for detachment from the I(-) x C(4)H(5)N (I(-) x pyrrole) cluster anion at wavelengths between 360 and 260 nm. The direct detachment spectra show strong similarities to those of I(-), although a strong solvent shift, broadening and some structure is observed. A nondirect, dissociative or autodetachment feature is also observed over a range of wavelengths. Ab initio calculations identify several local minima associated with neutral and anion isomers. Energy and Franck-Condon arguments are used to assess the role of these in the detachment process. The cluster anion structure is essentially an I(-) atomic anion in the presence of a neutral pyrrole molecule. The spectral structure arises due to interactions in the open shell neutral cluster residue resulting from detachment. The indirect detachment feature arises through the formation of an intermediate dipole bound cluster anion state which subsequently dissociates. The energy dependence of this channel (observed over a 0.6 eV range of photon energies) is discussed in terms of the wide amplitude motions associated with the van der Waals modes of the cluster anions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.