Abstract

The development of a simple, sensitive, and effective method for the analysis of circulating tumor cells (CTCs) is essential for cancer diagnosis and metastasis prediction. In this work, we have proposed an enzyme-free electrochemical method for specific capture, sensitive quantification, and efficient release of CTCs. To achieve this, the specific interaction between CTCs and the corresponding aptamer designed to be located in the identification probe (IP) will unfold the hairpin structure of IP. Consequently, IP will initiate a hybridization reaction to produce a duplex, which will further trigger the hybridization chain reaction (HCR) process to form a composite product of CTCs and double-stranded DNA polymers. Therefore, a significantly amplified signal readout can be obtained. Moreover, the composite product can be brought to the electrode surface by tetrahedral DNA nanostructures to achieve the purpose of capturing and quantifying CTCs. More significantly, these captured CTCs can be controlled released without compromising cell viability via a simple strand displacement reaction. Taking the breast cancer cell MCF-7 as a representative, the newly developed approach led to an ultralow detection limit of 3 cells mL-1, which is superior to several studies previously reported. The current method has also been demonstrated to analyze CTCs in human whole blood and hence revealed a great potential in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.