Abstract

This letter introduces a differential dynamic programming (DDP) based framework for polynomial trajectory generation for differentially flat systems. In particular, instead of using a linear equation with increasing size to represent multiple polynomial segments as in literature, we take a new perspective from state-space representation such that the linear equation reduces to a finite horizon control system with a fixed state dimension and the required continuity conditions for consecutive polynomials are automatically satisfied. Consequently, the constrained trajectory generation problem (both with and without time optimization) can be converted to a discrete-time finite-horizon optimal control problem with inequality constraints, which can be approached by a recently developed interior-point DDP (IPDDP) algorithm. Furthermore, for unconstrained trajectory generation with preallocated time, we show that this problem is indeed a linear-quadratic tracking (LQT) problem (DDP algorithm with exact one iteration). All these algorithms enjoy linear complexity with respect to the number of segments. Both numerical comparisons with state-of-the-art methods and physical experiments are presented to verify and validate the effectiveness of our theoretical findings. The implementation code will be open-sourced. <xref ref-type="fn" rid="fn1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><sup>1</sup></xref> <fn id="fn1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><label><sup>1</sup></label> [Online] Available: <uri>https://github.com/ntu-caokun/DIRECT</uri> </fn>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.