Abstract

An elegant approach for the synthesis of graphene on the strong ferromagnetic (FM) material Mn5Ge3 is proposed via intercalation of Mn in the graphene-Ge(111) interface. According to the density functional theory calculations, graphene in this strongly interacting system demonstrates the large exchange splitting of the graphene-derived π band. In this case, only spin-up electrons in graphene preserve the Dirac-electron-like character in the vicinity of the Fermi level and the K point, whereas such behavior is not detected for the spin-down electrons. This unique feature of the studied gr-FM-Mn5Ge3 interface that can be prepared on the semiconducting Ge can lead to its application in spintronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.