Abstract
The Kalb-Ramond field, identifiable with bulk torsion in a five-dimensional Randall Sundrum (RS) scenario, has Chern-Simons interactions with gauge bosons, from the requirement of gauge anomaly cancellation. Its lowest Kaluza Klein (KK) mode on the visible 3-brane can be identified with a spin-0 CP-odd field, namely, the axion. By virtue of the warped geometry and Chern-Simons couplings, this axion has unsuppressed interactions with gauge bosons in contrast to ultra-suppressed interactions with fermions. The ensuing dynamics can lead to a peak in the diphoton spectrum, which could be observed at the LHC, subject to the prominence of the signal. Moreover, the results can be numerically justified when the warp factor is precisely in the range required for stabilization of the electroweak scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.