Abstract

BackgroundDiastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system.MethodsFemale C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks.ResultsWD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration.ConclusionsTogether, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.

Highlights

  • Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events

  • Linagliptin improves diastolic dysfunction Compared to control diet (CD), western diet (WD) induced DD (Fig. 1, Table 1)

  • We have demonstrated that linagliptin suppresses systemic [18], as well as cardiac dipeptidyl peptidase-4 (DPP-4) activity in WD-fed mice

Read more

Summary

Introduction

Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. Premenopausal women are at lower risk for CVD than men. Young overweight [3], obese [4] or obese and diabetic [5] women exhibit subclinical DD accompanied by LVH, and are at a higher risk of developing heart failure compared to their male counterparts [6, 7]. DD and the eventual progression to heart failure are major health care concerns associated with the ongoing epidemics of obesity and diabetes, especially in premenopausal women [8, 9]. Given the increased propensity of developing cardiac stiffness in females with insulin-resistance, investigating the molecular mechanisms underlying the development of DD in females is of paramount importance

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.