Abstract
Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: if K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x 1 ,...,x n ∈R such that there is no algorithm to tell whether a polynomial equation with coefficients in ℚ(x 1 ,...,x n ) has solutions in R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.