Abstract
Abstract It is well-known that Morgan-Voyce polynomials B n(x) and b n(x) satisfy both a Sturm-Liouville equation of second order and a three-term recurrence equation ([SWAMY, M.: Further properties of Morgan-Voyce polynomials, Fibonacci Quart. 6 (1968), 167–175]). We study Diophantine equations involving these polynomials as well as other modified classical orthogonal polynomials with this property. Let A, B, C ∈ ℚ and {pk(x)} be a sequence of polynomials defined by $$\begin{gathered} p_0 (x) = 1 \hfill \\ p_1 (x) = x - c_0 \hfill \\ p_{n + 1} (x) = (x - c_n )p_n (x) - d_n p_{n - 1} (x), n = 1,2,..., \hfill \\ \end{gathered} $$ with $$(c_0 ,c_n ,d_n ) \in \{ (A,A,B),(A + B,A,B^2 ),(A,Bn + A,\tfrac{1}{4}B^2 n^2 + Cn)\} $$ with A ≠ 0, B > 0 in the first, B ≠ 0 in the second and C > −¼B 2 in the third case. We show that the Diophantine equation with m > n ≥ 4, ≠ 0 has at most finitely many solutions in rational integers x, y.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.