Abstract

We have observed resonant features in the spectrum of the fluctuations of a linearly polarized diode laser beam transmitted through a rubidium vapor cell, corresponding to the evolution of the atomic spin in the presence of a constant magnetic field. The observed resonances occur at a noise frequency corresponding to twice the Larmor frequency of ground state rubidium atoms and are due to two-photon Raman processes involving the carrier frequency and the noise sideband. We observed noise resonances for frequencies of the order of one MHz via heterodyne detection. Due to nonlinear Faraday rotation, we detected emitted light with polarization orthogonal to the incident field. The influence of the laser light fluctuations on the transmitted light noise spectrum was investigated by using two diode laser sources with different spectral bandwidths. The observed features are in qualitative agreement with a semiclassical theoretical model that treats laser fluctuations up to first order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.