Abstract

The converter topologies identified as diode-clamped multilevel (DCM) or, equivalently, as multipoint clamped (MPC), are rarely used in industrial applications, owing to some serious drawbacks involving mainly the stacked bank of capacitors that constitutes their multilevel DC link. The balance of the capacitor voltages is not possible in all operating conditions when the MPC converter possesses a passive front end. On the other hand, in AC/DC/AC power conversion, the back-to-back connection of a multilevel rectifier with a multilevel inverter allows the balance of the DC-link capacitor voltages and, at the same time, it offers the power-factor-correction capability at the mains AC input. An effective balancing strategy suitable for MPC conversion systems with any number of DC-link capacitors is presented here. The strategy has been carefully studied to optimize the converter efficiency. The simulation results related to a high-power conversion system (up to 10 MW) characterized by four intermediate DC-link capacitors are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.