Abstract

Dizinc complexes that were formed from 2:1 mixtures of Zn(NO3)2 and dinucleating ligands TPHP (1), TPmX (2) or TPpX (3) in aqueous solutions efficiently hydrolyzed diribonucleoside monophosphate diesters (NpN) under mild conditions. The dinucleating ligand affected the structure of the aquo-hydroxo-dizinc core, resulting in different characteristics in the catalytic activities towards NpN cleavage. The pH-rate profile of ApA cleavage in the presence of (Zn2+)(2)-1 was sigmoidal, whereas those of (Zn2+)(2)-2 and (Zn2+)(2)-3 were bell-shaped. The pH titration study indicated that (Zn2+)(2)-1 dissociates only one aquo proton (up to pH 12), whereas (Zn2+)(2)-2 dissociates three aquo protons (up to pH 10.7). The observed differences in the pH-rate profile are attributable to the various distributions of the monohydroxo-dizinc species, which are responsible for NpN cleavage. As compared to that using (Zn2+)(2)-1, the NpN cleavage using (Zn2+)(2)-2 showed a greater rate constant, with a higher product ratio of 3'-NMP/2'-NMP. The saturation behaviors of the rate, with regard to the concentration of NpN, were analyzed by Michaelis-Menten type kinetics. Although the binding of (Zn2+)(2)-2 to ApA was weaker than that of (Zn2+)(2)-1, (Zn2+)(2)-2 showed a greater kcat value than (Zn2+)(2)-1, resulting in higher ApA cleavage activity of the former.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.