Abstract

We introduce deformable interaction analogy (DINA) as a means to generate close interactions between two 3D objects. Given a single demo interaction between an anchor object (e.g. a hand) and a source object (e.g. a mug grasped by the hand), our goal is to generate many analogous 3D interactions between the same anchor object and various new target objects (e.g. a toy airplane), where the anchor object is allowed to be rigid or deformable. To this end, we optimize the pose or shape of the anchor object to adapt it to a new target object to mimic the demo. To facilitate the optimization, we advocate using interaction interface (ITF), defined by a set of points sampled on the anchor object, as a descriptive and robust interaction representation that is amenable to non-rigid deformation. We model similarity between interactions using ITF, while for interaction analogy, we transform the ITF, either rigidly or non-rigidly, to guide the feature matching to the reposing and deformation of the anchor object. Qualitative and quantitative experiments show that our ITF-guided deformable interaction analogy works surprisingly well even with simple distance features compared to variants of state-of-the-art methods that utilize more sophisticated interaction representations and feature learning from large datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.