Abstract

There are significant morphological and biochemical alterations during nerve growth factor (NGF)-promoted neuronal differentiation, and the process is regulated by molecules, including nitric oxide (NO). Dimethylarginine dimethylaminohydrolase (DDAH) is thought to play a critical role in regulating NO production via hydrolyzing the endogenous NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). Thus, we tested the role of DDAH in NGF-promoted differentiation of PC12 (pheochromocytoma) cells. The present results show that both mRNA and protein levels of DDAH1 were increased, whereas those of DDAH2 were decreased, during NGF-promoted cell differentiation. Both the DDAH activity and the ADMA level in cultured medium were unchanged in this process. NGF promoted neurite formation and induced the expression of microtubule-associated protein 2 (MAP2), a neuronal marker, which were both significantly repressed by DDAH1 silence with small interfering RNA but not by DDAH2 silence. The expressions of three isoforms of NOS were markedly upregulated after NGF stimulation with a time course similar to that of DDAH1, which were attenuated by DDAH1 silence. Conversely, overexpression of DDAH1 accelerated neurite formation in PC12 cells, concomitantly with upregulating the expression of three NOS isoforms. In summary, our data reveal the critical regulatory effect of DDAH1 on NGF-promoted differentiation of PC12 cells in an NOS/NO-dependent but ADMA-independent manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.