Abstract

Owing to flexible structural design and rapid prototyping manufacturing, 3D printable hydrogels with solid-like and fluid-like characters have emerged as a promising candidate for biomedical engineering, soft robotics, and flexible electronics. However, existing 3D printing of hydrogel place substantial constraints on hydrogel high-fidelity of the printed hydrogel complex structures due to the shape deformation and collapse caused by water evaporation. Herein, we propose a mixed solvent printing strategy followed with water dialysis to achieve vat photopolymerization 3D printing of high-fidelity hydrogel structure by restraining water evaporation. Concretely, dimethyl sulfoxide (DMSO) is introduced into the hydrogel ink as co-solvent to improve the anti-dehydration performance during 3D printing. The as-prepared gels are then transformed into hydrogels with good fidelity and excellent performance through solvent exchange and water dialysis. Enabled by these characteristics, various functional devices with complex structures are demonstrated with the present high-fidelity 3D printing of diverse hydrogels. The solvent assisted high-fidelity hydrogel 3D printing protocol combining with the compatibility to various high-performance hydrogels is believed to be promising for wearable devices, wound dressings, electronic skin, and intelligent robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.