Abstract

Transcobalamin II receptor (TC II-R) exists as a monomer and a dimer of molecular masses of 62 and 124 kDa in the microsomal and plasma membranes, respectively, and in vitro, pure TC II-R monomer dimerizes upon insertion into egg PC/cholesterol (molar ratio, 4:1) liposomes (Bose, S., Seetharam, S., and Seetharam, B. (1995) J. Biol Chem. 270, 8152-8157 and Bose, S., Seetharam, S., Hammond, T., and Seetharam, B. (1995) Biochem. J. 310, 923-929). The current studies were carried out to define the mechanism of TC II-R dimerization. Both the mature TC II-R (62 kDa) and the enzymatically deglycosylated TC II-R (45-47 kDa) demonstrated optimal association and formed dimers of molecular masses of 95 and 124 kDa, respectively, at 22 degrees C when bound to egg PC vesicles containing at least 10 mol % of cholesterol. Mature TC II-R dimerized upon insertion into synthetic phosphatidylcholine vesicles of different fatty acyl chain length (dimyristoyl, dipalmitoyl, and disteroyl phosphatidylcholine) in the absence or the presence of cholesterol at temperatures below or above their transition temperatures, respectively. Dimerization of TC II-R also occurred with vesicles prepared using lipid extract from the plasma but not microsomal membranes. Cholesterol depletion of native intestinal plasma membranes or its enrichment in the microsomal membranes resulted in the in situ conversion of the 124-kDa dimer to the 62-kDa monomer or of the monomer into the dimer form, respectively. Treatment of plasma membranes with phospholipase A2 resulted in the conversion of the dimer form of the receptor to the monomer form and spin label studies using 1-palmitoyl, 12 doxylsteroyl phosphatidylcholine revealed that interactions of TC II-R with PC vesicles increased order around the probe. Based on these results we suggest that dimerization of TC II-R is mediated by its interactions with a rigid more ordered lipid bilayer membrane, is regulated in plasma membranes by cholesterol levels, and is independent of glycosylation-mediated folding.

Highlights

  • Transcobalamin II receptor (TC II-R) exists as a monomer and a dimer of molecular masses of 62 and 124 kDa in the microsomal and plasma membranes, respectively, and in vitro, pure transcobalamin II (TC II)-R monomer dimerizes upon insertion into egg PC/cholesterol liposomes (Bose, S., Seetharam, S., and Seetharam, B. (1995) J

  • The results of the current study show that (a) in vitro, the dimerization of TC II-R is regulated by a rigid, more ordered lipid bilayer, (b) in vivo, higher cholesterol levels of plasma membranes provide a more ordered lipid microenvironment to facilitate the dimerization of TC II-R, and (c) the dimerization of TC II-R is not influenced by folding alterations due to its N- and O-glycosylation

  • In order to optimize the conditions for the recovery of the monomer and dimer forms of TC II-R during immunoblotting, the proteins separated on SDS-PAGE were transferred to nitrocellulose membranes for 15–90 min (Fig. 1)

Read more

Summary

Introduction

Transcobalamin II receptor (TC II-R) exists as a monomer and a dimer of molecular masses of 62 and 124 kDa in the microsomal and plasma membranes, respectively, and in vitro, pure TC II-R monomer dimerizes upon insertion into egg PC/cholesterol (molar ratio, 4:1) liposomes (Bose, S., Seetharam, S., and Seetharam, B. (1995) J. Treatment of plasma membranes with phospholipase A2 resulted in the conversion of the dimer form of the receptor to the monomer form and spin label studies using 1-palmitoyl, 12 doxylsteroyl phosphatidylcholine revealed that interactions of TC II-R with PC vesicles increased order around the probe. Based on these results we suggest that dimerization of TC II-R is mediated by its interactions with a rigid more ordered lipid bilayer membrane, is regulated in plasma membranes by cholesterol levels, and is independent of glycosylation-mediated folding. The results of the current study show that (a) in vitro, the dimerization of TC II-R is regulated by a rigid, more ordered lipid bilayer, (b) in vivo, higher cholesterol levels of plasma membranes provide a more ordered lipid microenvironment to facilitate the dimerization of TC II-R, and (c) the dimerization of TC II-R is not influenced by folding alterations due to its N- and O-glycosylation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.