Abstract

BackgroundThe cell wall of Mycobacterium tuberculosis contains a wide range of phosphatidyl inositol-based glycolipids that play critical structural roles and, in part, govern pathogen-host interactions. Synthesis of phosphatidyl inositol is dependent on free myo-inositol, generated through dephosphorylation of myo-inositol-1-phosphate by inositol monophosphatase (IMPase). Human IMPase, the putative target of lithium therapy, has been studied extensively, but the function of four IMPase-like genes in M. tuberculosis is unclear.ResultsWe determined the crystal structure, to 2.6 Å resolution, of the IMPase M. tuberculosis SuhB in the apo form, and analysed self-assembly by analytical ultracentrifugation. Contrary to the paradigm of constitutive dimerization of IMPases, SuhB is predominantly monomeric in the absence of the physiological activator Mg2+, in spite of a conserved fold and apparent dimerization in the crystal. However, Mg2+ concentrations that result in enzymatic activation of SuhB decisively promote dimerization, with the inhibitor Li+ amplifying the effect of Mg2+, but failing to induce dimerization on its own.ConclusionThe correlation of Mg2+-driven enzymatic activity with dimerization suggests that catalytic activity is linked to the dimer form. Current models of lithium inhibition of IMPases posit that Li+ competes for one of three catalytic Mg2+ sites in the active site, stabilized by a mobile loop at the dimer interface. Our data suggest that Mg2+/Li+-induced ordering of this loop may promote dimerization by expanding the dimer interface of SuhB. The dynamic nature of the monomer-dimer equilibrium may also explain the extended concentration range over which Mg2+ maintains SuhB activity.

Highlights

  • References for PDB entries cited in Table 2 of the main text

  • Brown1*, Guoyu Meng1,4*, Hemza Ghadbane1*, David J

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.