Abstract

The effects of dimensional reduction and ion intercalation on superconductivity (SC) in the presence of charge density waves (CDWs) in two-dimensional crystals of 2H-TaSe2 were characterized. We prepared atomically thin crystals by mechanical exfoliation and performed electrical transport measurements on devices made by photolithography. The superconducting transition temperature (TcSC) was found to increase monotonically as the thickness decreased, changing from 0.14 K in the bulk to higher than 1.4 K for a 3-nm-thick crystal. The temperature dependence of upper critical field was found to be anomalous. The CDW transition temperature (TcCDW) was found to decrease, but to a less extent than TcSC, from 120 K in the bulk to around 113 K for the 3-nm-thick crystal. In addition, ion intercalation was found to increase TcSC and suppress TcCDW in an atomically thin crystal of 2H-TaSe2. The implications of these findings are discussed. We suggest that dimensional reduction and ion intercalation are potentially effective ways to engineer material properties for layered transition metal chalcogenides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.