Abstract

This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum \({{\mathrm{sp}}}(L)\) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension \(\dim (a, b)\) is equal to the effective packing dimension \({{\mathrm{Dim}}}(a, b)\), then \({{\mathrm{sp}}}(L)\) contains a unit interval. We also show that, if the dimension \(\dim (a, b)\) is at least one, then \({{\mathrm{sp}}}(L)\) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.