Abstract

Site-controlled InGaAsN quantum wires (QWRs) emitting at 1.3 μm at room temperature were grown on V-grooved GaAs substrates by modulated-flux metallorganic vapor phase epitaxy. The nonplanar substrate template is shown to enhance the nitrogen uptake, evidenced by a redshift in photoluminescence wavelength twice larger for the QWRs than for the adjacent quantum well regions. The mechanism of this increase in nitrogen incorporation efficiency, achieved without degradation in optical properties, is explained by the extended gradient of In content at the step-rich QWR interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.