Abstract

Analysis of V, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices was performed by inductively coupled plasma mass spectrometry (ICPMS) after simple 50-fold dilution in 1% (v/v) HNO3-0.5% (v/v) HCl-5% (v/v) ethanol. Ethanol was added to overwhelm native organic components and dominate matrix effects. A universal calibration curve was built based on a likewise treated reagent standard series. This new matrix overcompensation calibration (MOC) strategy was developed to effectively compensated formatrix effects of carbon origin and achieved quantitative (92.5-118.8%) recoveries comparable to those by standard addition calibration (92.1-117.8%) and microwave-aided digestion (99.3-116.8%). The LODs were 0.528, 0.204, 0.195, and 2.07ngmL-1 for toxic elements As, Cd, Pb, and Ni, respectively, adequate for their regulatory monitoring. Ge, Rh, Tb, and Ir were used as internal standards. MOC renders a calibration curve universally applicable to any clear fruit juices of diversified crop, geographic, and manufacturer origins resulting in cost saving and enhanced productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.