Abstract

The ability of dihydrothymidine (DHdTTP) and thymidine glycol (dTTP-GLY) 5'-triphosphates to serve as substrates for different DNA polymerases was investigated. DHdTTP but not dTTP-GLY was used as a substrate by E. coli DNA polymerase I (Pol I). Within the detection limit of the assay used, neither T4 DNA polymerase nor avian myeloblastosis virus (AMV) reverse transcriptase used DHdTTP or dTTP-GLY as substrates. The ability of DHdTTP and dTTP-GLY to undergo enzyme-catalyzed turnover to the monophosphate paralleled their ability to serve as substrates for polymerization. These results, along with kinetic parameters for the incorporation of DHdTTP with Pol I, strongly suggest that the saturation of thymine C5-C6 bond and the substituent groups at C5 and C6 differentially exert effects on binding to DNA polymerases. DNA sequencing gel analysis of the polymerization products revealed that most single adenine sites were capable of templating DHdTTP, however, DNA synthesis was partially arrested at multiple adenine sites, suggesting that sequential incorporation of DHdTTP produced significant disorder in the primer terminus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.