Abstract

A digitally controlled multiwavelength variable fiber-optic attenuator using a two-dimensional digital micromirror device (DMD) is introduced. The results from an experimental four-wavelength (i.e., 1546.92, 1548.52, 1550.12, and 1551.72 nm) proof-of-concept attenuator indicate a 26-dB dynamic range and 11-bit resolution. The measured attenuator average coherent optical cross talk per wavelength channel is -38 dB , limited by the additive noise resulting from the nonideal isolation of the optical circulator and the attenuator module. The average optical loss for our experimental attenuator is 15 dB and is limited mainly by the visible-mode DMD that is used as a 1550-nm infrared window device. Our theoretical estimate of a <8-dB loss optimized attenuator can be used for equalization in multiwavelength fiber-optic communications with as many as 108 wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.