Abstract
Industry 4.0 is reshaping conventional factories into “smart factories” via the widespread use of IoT-enabled networks of linked devices, sensors, and software for process optimization and monitoring. Intelligent manufacturing facilities may employ IoT-based predictive maintenance to reduce downtime, increase equipment longevity, and avoid machine problems. Manufacturers may get real-time insights into energy consumption patterns, which is a major concern in the business. The primary objective is to optimize energy use during part manufacturing. Hence, this paper proposes the Internet of Things- Low-Power Wide-Area Network Model (IoT-LPWM) to monitor manufacturing and reduce energy consumption. The proposed method's production status component uses visual Knowledge Map Analysis loaded with data from the edge device. A Low-power wide-area network (LPWAN) is the fundamental component of the suggested approach to industrial wireless communication. Using edge computing technology in LPWAN helps reduce computational complexity by shifting high-intensity processing to the periphery, where devices with computing resources are more readily available. Both the energy needed to process and store massive data and the likelihood of cyberattacks may be decreased with this method. The experimental results show that the IoT-LPWM provides useful information to help them make decisions and reduce energy consumption. The experimental results show that our proposed method IoT-LPWM achieves a high performance ratio of 97%, attack prevention ratio of 96.3%, energy management ratio of 93.8%, and data transmission ratio of 98.1% compared to other methods.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have