Abstract

Currently, the most secure practical steganographic schemes for empirical cover sources embed their payload while minimizing a distortion function designed to capture statistical detectability. Since there exists a general framework for this embedding paradigm with established payload-distortion bounds as well as near-optimal practical coding schemes, building an embedding scheme has been essentially reduced to the distortion design. This is not an easy task as relating distortion to statistical detectability is a hard and open problem. In this article, we propose an innovative idea to measure the embedding distortion in one fixed domain independently of the domain where the embedding changes (and coding) are carried out. The proposed universal distortion is additive and evaluates the cost of changing an image element (e.g., pixel or DCT coefficient) from directional residuals obtained using a Daubechies wavelet filter bank. The intuition is to limit the embedding changes only to those parts of the cover that are difficult to model in multiple directions while avoiding smooth regions and clean edges. The utility of the universal distortion is demonstrated by constructing steganographic schemes in the spatial, JPEG, and side-informed JPEG domains, and comparing their security to current state-of-the-art methods using classifiers trained with rich media models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.