Abstract

A gamma-ray tracking algorithm has been implemented and tested, using simulated data, for gamma rays with energies between 0.1 and 2 MeV, and its performance evaluated for a 90-mm-long, 60-mm-diameter, cylindrical, 36 (6 /spl times/ 6) segment detector. The performance of the algorithm in two areas was determined: Compton suppression and Doppler shift correction. It was found that for gamma rays of energies around 1 MeV, a ratio of photopeak counts to total counts of 2:3 could be obtained using the tracking algorithm, with only a 2% reduction in detection efficiency, compared to the untracked data. Approximately 80% of first interaction points could be correctly identified, enabling a good Doppler shift correction. A detector of the type simulated has recently been delivered, together with a compactPCI digital data acquisition system comprising 36 12-bit, 40-MHz flash ADCs, and 6200-MHz DSPs. Some initial data has been recorded using this system, and the performance of the tracking algorithm on this real data is comparable to its performance on simulated data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.