Abstract

The problem of the direct design of the closed-loop transfer function matrix is addressed for multivariable discrete systems. The limitations imposed by unstable zeros, time delays and the structure associated with these are quantified. A design procedure is formulated that provides the designer with quantitative measures for evaluating the tradeoffs between different closed-loop interaction structures and durations. The problem of intersample rippling is also considered. The procedure requires only linear-algebra operations, includes the eventual construction of the feedback controller in state space, and is presented in a way that allows its straightforward computer implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.