Abstract
We here propose to model active and cumulative cases data from COVID-19 by a continuous effective model based on a modified diffusion equation under Lifshitz scaling with a dynamic diffusion coefficient. The proposed model is rich enough to capture different aspects of a complex virus diffusion as humanity has been recently facing. The model being continuous it is bound to be solved analytically and/or numerically. So, we investigate two possible models where the diffusion coefficient associated with possible types of contamination are captured by some specific profiles. The active cases curves here derived were able to successfully describe the pandemic behavior of Germany and Spain. Moreover, we also predict some scenarios for the evolution of COVID-19 in Brazil. Furthermore, we depicted the cumulative cases curves of COVID-19, reproducing the spreading of the pandemic between the cities of São Paulo and São José dos Campos, Brazil. The scenarios also unveil how the lockdown measures can flatten the contamination curves. We can find the best profile of the diffusion coefficient that better fit the real data of pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.