Abstract

The Fokker--Planck approximation for an elementary linear, two-dimensional kinetic model endowed with a mass-preserving integral collision process is numerically studied, along with its diffusive limit. In order to set up a well-balanced discretization relying on an $S$-matrix, exact steady states of the continuous equation are derived. The ability of the scheme to keep these stationary solutions invariant produces the discretization of the local differential operator which mimics the collision process. The aforementioned scheme can be reformulated as an implicit-explicit one, which is proved to be both well-balanced and asymptotic-preserving in the diffusion limit. Several numerical benchmarks, computed on coarse grids, are displayed so as to illustrate the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.