Abstract

Diffusion tensor imaging (DTI) is used in tumor growth models to provide information on the infiltration pathways of tumor cells into the surrounding brain tissue. When a patient-specific DTI is not available, a template image such as a DTI atlas can be transformed to the patient anatomy using image registration. This study investigates a model, the invariance under coordinate transform (ICT), that transforms diffusion tensors from a template image to the patient image, based on the principle that the tumor growth process can be mapped, at any point in time, between the images using the same transformation function that we use to map the anatomy. The ICT model allows the mapping of tumor cell densities and tumor fronts (as iso-levels of tumor cell density) from the template image to the patient image for inclusion in radiotherapy treatment planning. The proposed approach transforms the diffusion tensors to simulate tumor growth in locally deformed anatomy and outputs the tumor cell density distribution over time. The ICT model is validated in a cohort of ten brain tumor patients. Comparative analysis with the tumor cell density in the original template image shows that the ICT model accurately simulates tumor cell densities in the deformed image space. By creating radiotherapy target volumes as tumor fronts, this study provides a framework for more personalized radiotherapy treatment planning, without the use of additional imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.